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 5.1  INTRODUCTION 
 
Publicly supported compilations of mutagenicity and carcinogenicity data are 
available for a significant number and variety of environmental and industrial 
chemicals and, to a lesser extent, pharmaceutical chemicals.  These datasets represent 
tremendous past investment in in vivo and in vitro chemical toxicity testing, primarily 
driven by government regulatory concerns.  These datasets also are the historical 
informational basis from which virtually all past structure-activity relationship (SAR) 
models of mutagenic and carcinogenic activity have been derived, and mechanism-
based SAR inferences pertaining to these endpoints have been gleaned.  It follows 
that the nature, representation and availability of these data exert a governing 
influence on the success of derived SAR models.  Less appreciated, however, is the 
role that SAR modeling, itself, can play in assessing data quality, consistency, and 
completeness.  Furthermore, SAR modeling can offer objective means for assessing 
information content as a function of how these data are pooled, classified, or 
otherwise interpreted by toxicologists and regulators.  In this sense, existing 
representations of mutagenicity and carcinogenicity data constitute the working 
interface between toxicologists and SAR modelers.     

Schematically illustrated in Figure 5.1 are two generic categories of SAR 
modeling activities with different data requirements.  The top half of the figure 
represents SAR global model development for a broad toxicity endpoint of interest, 
such as rodent carcinogenicity or Salmonella mutagenicity.  In this case, biological 
activity data are gathered for as wide a range of chemical structures as possible.  

  
 
FIGURE 5.1.  Schematic illustrating different types of data gathering for SAR 
model development and toxicity prediction.   
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Automated algorithms are then employed to extract rules, statistical associations, 
patterns, etc. that can be applied to toxicity prediction of new chemicals.  This type of 
modeling activity is knowledge-based and exploratory in nature, and has the potential 
for generating a priori SAR hypotheses for subsets and subclasses of the larger 
dataset.  Artificial intelligence (AI) and statistical approaches that fall under this 
category of SAR modeling activity, and issues associated with their application to 
modeling of rodent carcinogenicity, have been reviewed1,2 and are discussed 
elsewhere in this volume.     

A second type of SAR modeling activity, represented in the lower half of 
Figure 5.1, refers to the process of data gathering towards the goal of toxicity 
prediction for a single chemical or chemical class of interest.  Preexisting SAR 
models, from commercial sources or previous model studies, can be used to generate 
SAR predictions for a chemical or class of interest.  An example of this approach is 
illustrated in the study of Moudgal et al.3 in which the TOPKAT carcinogenicity 
prediction module4 was applied to predicting potential carcinogenicity for a series of 
244 small organic chemicals detected as water disinfection by-products.  Increased 
confidence in an individual toxicity prediction of this sort is gained from surveying 
the original training database for examples of structurally similar chemicals with a 
common basis for activity.  In addition, or alternatively, one could perform analog 
searches of existing data to build a mechanism-based rationale for an SAR prediction 
of a chemical or class of chemicals.  Analogs imply structurally or biofunctionally 
similar compounds, where the definition of similarity is informed by expert judgment 
and chemical knowledge.  A mechanistic SAR analog approach to prediction is 
described in Chapter 2 of this volume and illustrated in a study by Woo et al.5, in 
which the same water disinfection by-product chemicals as considered in the 
Moudgal et al. study3 were evaluated and ranked for potential carcinogenicity.      

The first part of this chapter considers issues pertaining to the nature, 
representation, and availability of mutagenicity and carcinogenicity data as they 
relate to SAR modeling and prediction problems.  Prominent sources of publicly 
available mutagenicity and carcinogenicity data are listed, along with indication of 
the availability of chemical structure linkages and complete database access that have 
the potential to greatly facilitate SAR modeling efforts.  An essential consideration in 
the use of these datasets for SAR modeling, which is discussed in some detail for 
rodent carcinogenicity, is the degree to which these data represent objective, 
quantitative experimental measures of a biological endpoint or biochemical event.  
Alternatively, it is important to know to what extent expert judgment and consensus 
have been brought to bear on interpreting and classifying an experimental result, as 
well as the aim of this classification.  The discussion considers how the 
representation and nature of modeled biological data strongly influence the resulting 
characteristics and success of SAR models.  Examples from the literature are used to 
illustrate how SAR models, in turn, can themselves generate insight into issues of 
mechanistic complexity and biological relevance of a particular toxicity endpoint 
representation. 

For the purposes of this discussion, we focus primarily on a uniquely large 
and varied body of work associated with application of the CASE/M-CASE SAR 
technology6-8 to global modeling of mutagenicity and carcinogenicity.  In particular, 
we are interested in those studies in which generic data representation and database 
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issues have been explicitly considered and explored.  This focus does not represent 
endorsement of this SAR prediction technology over any others, nor does it forgive 
the challenges of modeling non-congeneric data for complex biological endpoints.  
These issues have been considered in some depth by others2,9-14.    

A basic tenet of SAR study is that the quality of model predictions is highly 
dependent upon the training set, or knowledge-base, used to derive the SAR models.  
Returning to Figure 5.1, we conclude that broad access to quality data is essential for 
building global SAR prediction models, and for validating individual predictions of 
these and more focused models using analog searches.  The last section of this 
chapter briefly considers some new technologies and initiatives aimed at promoting 
greater structure-linked access to public toxicity databases for facilitating SAR 
exploration and model development.  This includes a survey of relational database 
initiatives and data-mining applications pertaining to carcinogenicity and 
mutagenicity endpoints.   
  
5.2  PUBLIC SOURCES OF CARCINOGENICITY AND  
 MUTAGENICITY DATA 

 
5.2.1  Online Resources 
 
A number of literature reviews offer listings and descriptions of publicly accessible 
online and digital resources containing chemical mutagenicity and carcinogenicity 
data.  The interested reader should consult these reviews for more detailed 
description of websites and their contents.  Brinkhuis15 provides an extensive survey 
of US government public websites, offering information on many types of chemical 
toxicity, including mutagenicity and carcinogenicity.  Richard et al.16 survey online 
toxicity databases with particular emphasis on those providing linkages to chemical 
structure information.  In addition, an issue of the journal Toxicology (published by 
Elsevier Science) is devoted entirely to review of online digital information and tools, 
with articles organized according to toxicology discipline and/or regulatory 
application17.  In that issue, Young18 broadly surveys genetic toxicology resources 
and includes discussion of the TOXNET databases of the National Library of 
Medicine (NLM), as well as the CHEMID PLUS protocol, which enables structure 
seachability across and within these databases.  Also in that issue, Junghans et al.19 
survey a wide range of cancer information resources, including the International 
Agency for Research on Cancer (IARC) monographs, TOXNET resources, the 
Berkeley Carcinogenic Potency Database (CPDB) maintained by L. S. Gold, and the 
National Cancer Institute/ National Toxicology Program (NCI/NTP) rodent bioassay 
and genetic toxicity databases administered by the National Institutes for 
Environmental Health Sciences (NIEHS).  Table 5.1 provides a listing and 
description of websites that are the most prominent public sources of chemical 
mutagenicity and carcinogenicity information.   
 
5.2.2  Chemical Structures Availability 
 
Although it would seem that abundant public information pertaining to chemical 
carcinogenicity and mutagenicity is available for SAR model development, 
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TABLE 5.1 
Selected Online Public Resources for Carcinogenicity and Mutagenicity Data for Use in SAR Modeling 

 
Website URL a Sponsor/Database Mutagenicity/ 

STT b 
Cancer 

Bioassay 
Structures?/ 
Searchable?c 

Downloadable?d Description 

http://ntp-

server.niehs.nih.gov/ 

 

National Cancer 

Institute /National 

Toxicology Program 

(NCI/NTP) 

SAL, MLA Mouse, 

rat 

Yes/No No Technical reports of mutagenesis and 

long-term rodent bioassays and 

summary results for over 500 

chemical substances; two-

dimensional and three-dimensional 

structures available. 

http://toxnet.nlm.nih.gov/ 

 

National Library of 

Medicine 

(NLM)/TOXNET 

SAL Misc. Yes/Yes Yes, without 

structures 

TOXNET site maintains multiple 

toxicity databases searchable by 

text and structure; NLM site offers 

full ftp download of database 

textual content; without structures. 

http://toxnet.nlm.nih.gov/ 

 

Environmental 

Protection Agency 

(EPA)/ Gene-Tox 

Misc.  __ Yes/Yes Yes, without 

structures 

Genetic toxicity info on more than 

3000 chemicals for variety of assay 

systems abstracted from the 

literature and reviewed. 

http://toxnet.nlm.nih.gov/ 

 

Chemical 

Carcinogenesis 

Research Information 

System (CCRIS) 

Misc. Misc. Yes/Yes No Summary records abstracted from the 

literature on carcinogenicity, tumor 

promotion and inhibition, and 

mutagenicity on over 8000 

chemicals; with references. 
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TABLE 5.1 (Continued) 
Selected Online Public Resources for Carcinogenicity and Mutagenicity Data for Use in SAR Modeling 

 
Website URL a Sponsor/Database Mutagenicity/ 

STT b 
Cancer 

Bioassay 
Structures?/ 
Searchable?c 

Downloadable?d Description 

http://toxnet.nlm.nih.gov/  

or 

http://www.epa.gov/iris/  

EPA/ Integrated Risk 

Information System 

(IRIS) 

Misc. Misc. Yes/Yes No EPA summary analysis of available 

toxicity data in support of human 

health risk assessment for over 500 

chemicals; mostly textual content. 

http://toxnet.nlm.nih.gov/  

or 

http://www.mdli.com/product

s/ toxicity.html  

Nat. Inst. for 

Occupational Safety & 

Health/ Registry of 

Toxic Effects of 

Chemical Substances 

(RTECS) 

Misc. Misc. Yes/Yes No Literature-abstracted acute and 

chronic toxicity data for over 

70,000 chemicals; structure-

searchable database maintained and 

commercially available through 

MDL, Inc; older version accessible 

through TOXNET. 

http://potency.berkeley.edu/ 

cpdb.html 

 

Univ. of California – 

Berkeley/Carcinogenic 

Potency Database 

(CPDB) Project 

SAL Mouse, 

rat, 

hamster 

misc. 

No/No Yes, without 

structures 

Chronic animal cancer bioassay 

results with TD50 potencies for over 

1300 chemicals abstracted from 

literature sources and the NCI/NTP 

testing program, data reviewed and 

managed by L.S. Gold. 

http://www.epa.gov/gap-db/  EPA/ Genetic Activity 

Profiles (GAP) 

Misc. Links to 

IARC 

reviews 

Yes/No Yes Genetic toxicity information for 

over 600 chemicals tested in a wide 

range of STTs, abstracted from the 

literature, graphical profiles and 

tabular listings. 
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TABLE 5.1 (Continued) 
Selected Online Public Resources for Carcinogenicity and Mutagenicity Data for Use in SAR Modeling 

 
Website URL a Sponsor/Database Mutagenicity/ 

STT b 
Cancer 

Bioassay 
Structures?/ 
Searchable?c 

Downloadable?d Description 

http://monographs.iarc.fr  World Health 

Organization (WHO)/ 

International Agency 

for Research on Cancer 

(IARC) 

Misc. Misc. No/No No Published authoritative 

monographs on carcinogenic 

hazards to humans posed by more 

than 800 agents, authored by expert 

working groups; textual content. 

http://cactus.nci.nih.gov/ National Cancer 

Institute (NCI)/ 

Structure Database 

Browser 

Tumor inhibition cell line No Yes/Yes Yes, with 

Structures 

Two-dimensional structure and 

relational searching through NCI 

Development Therapeutics 

Program (DTP) Human Tumor Cell 

Line Screen database for over 

37,000 chemicals, full data 

accessibility, three-dimensional 

structures available. 

http://www.chemfinder.com CambridgeSoft/ 

ChemFinder 

Misc. Misc. Yes/Yes No Two-dimensional structure-

searchable queries with links to 

over 300 online public databases, 

some of which contain 

mutagenicity or carcinogenicity 

data. 
 

a  Website urls were active and current at the time of submission of this review; if a url becomes inactive, we suggest referring to the top-level url of the company or organization 
to relocate specific information. 
b  Database contains mutagenicity and/or short-term test (STT) information related to the carcinogenic process; SAL=Ames Salmonella typhimurium assay, MLA=mouse 
lymphoma assay. 
c  Database contains chemical structure information (two-dimensional and/or three-dimensional); database is searchable online by chemical structure.   
d  Entire database contents (as opposed to individual chemical results) can be downloaded from website without cost, with or without chemical structures.  
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this information has, for the most part, not been organized or made available for 
distribution with the needs of SAR practitioners in mind.  The most glaring 
deficiency is the absence of chemical structure information in many online, public 
databases, with toxicity information most commonly indexed and searchable only by 
Chemical Abstracts Number (CAS) or chemical name.  Even in cases where chemical 
structure information is currently provided and online toxicity data records are 
searchable by chemical structure or substructure (see Table 5.1 for examples), tabular 
listings of toxicology endpoint data linked to chemical structure cannot be 
downloaded in full (the single current exception is the NCI Structure Browser for 
accessing the Human Tumor Cell Line Screen database).  Hence, SAR practitioners 
relying on public online sources for carcinogenicity or mutagenicity data have had to 
expend considerable effort to extract summary toxicity results and add chemical 
structure information to databases prior to undertaking modeling.  Because no forum 
for public sharing is in place, in most cases this process is repeated with each new 
investigator undertaking to model the same dataset.  Commercial toxicity prediction, 
database, and data-mining applications have addressed this need to some extent by 
providing structure-linked versions of public toxicity databases that include 
carcinogenicity and mutagenicity data (see Table 5.2).  However, these programs are 
costly and inaccessible to many, do not survey all public datasets of possible interest, 
and do not in all cases provide unrestricted access to the toxicity data contained 
within.  Some public initiatives aimed at improving this situation will be discussed in 
Section 5.5. 

 
5.3  TOXICITY DATA REPRESENTATIONS: CARCINOGENICITY 
 
5.3.1 Nature of Existing Data 
 
Structure-activity relationship practitioners generally rely upon whatever description 
and quantification of the toxicity endpoint of concern is represented within public 
databases and do not typically undertake review of individual toxicity experiments or 
activity assignments; rather, this data representation is presumed to reflect the best 
judgment of toxicology domain experts as to biological relevance.  It is essential to 
recognize, however, that the nature of such endpoint quantification and activity 
assignments can profoundly impact resulting SAR models.  Of particular value to 
SAR modelers are downloadable tabular compilations of mutagenicity or 
carcinogenicity data that provide objective and standard comparative measures of a 
well-defined activity for a broad diversity of chemical structures.  A number of 
important data quality considerations in this regard should be noted.  Were data 
generated under strict experimental protocols overseen by the same laboratory or 
organization (e.g., NCI/NTP rodent carcinogenicity bioassay results)?  Is the database 
a bibliographic compilation of literature results reported from many laboratories, 
such as RTECS, CPDB, CCRIS, EPA Gene-Tox (see Table 5.1 for descriptions)?  If 
so, were the results abstracted from the literature with no external review (e.g., 
RTECS, CCRIS), or were the results reviewed and interpreted by experts in the field 
(e.g., CPDB, Gene-Tox)?  Does the database contain only examples of compounds 
and results that demonstrate some positive toxicity (e.g., RTECS) or does the    
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TABLE 5.2 
Commercial Toxicity Prediction, Database and Data-mining Applications That Contain Mutagenicity and 
Carcinogenicity Databases Compiled from Public Sources 

 
Website URL a Company/ 

Application 

Type Public Data 
Sources b 

Structure 
Searchable?c 

Description 

http://www.mdli.com/products/

toxicity.html  

 

MDL Inc./ 

Toxicity 

Relational 

bibliographic 

database 

RTECS, 

Misc.  

Yes Oracle-based system runs thru MDL/ISIS Host, extends data 

records from RTECS to 150,000+ chemicals, toxicity data 

abstracted from the published literature; with references. 

http://www.scivision.com/ToxS

ys.html  

or  

http://www.scivison.com/ 

QSARIS.html  

SciVision/ 

ToxSys and 

QSARIS 

Relational 

bibliographic 

database and 

QSAR development 

tools 

RTECS,  

Misc. 

Yes Desktop application, originally built from RTECS records, 

enhanced with records from other public databases, 230,000+ 

chemicals, endocrine disruptors, etc. QSARIS contains 

property calculation and statistical analysis tools for 

facilitating construction of QSAR/SAR models; linked to 

ToxSys database. 

http://www.multicase.com/  MultiCASE, 

Inc./  

M-CASE, 

CASE 

SAR toxicity 

prediction 

NCI/NTP, 

EPA/Gene-

Tox, CPDB 

No Contains 10 rodent (rat/mouse) carcinogenicity SAR models: 

four species/gender models for NCI/NTP, rat and mouse 

summary models for NCI/NTP and CPDB,  and overall rodent 

models for NCI/NTP and CPDB. Contains three models for 

summary Ames SAL mutagenicity data from NTP and EPA/ 

Gene-Tox; database exploration allowed only within 

constraints of prediction algorithm. 
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TABLE 5.2 (Continued) 
Commercial Toxicity Prediction, Database and Data-mining Applications That Contain Mutagenicity and 
Carcinogenicity Databases Compiled from Public Sources 
 

Website URL a Company/ 

Application 

Type Public Data Sources 
b 

Structure 
Searchablec 

Description 

http://www.accelrys.com/ 

products/topkat/  

 

Accelyrs/ 

TOPKAT 

SAR toxicity 

prediction 

FDA-CDER (NCI/NTP, 

CPDB, NCI, FDA, 

IARC, EPA); SA; misc. 

sources 

Yes Contains 8 species/gender (rat/mouse/male/female) multisite 

vs. single site models, and one weight-of-evidence 

carcinogenicity SAR discriminant model, all based on FDA-

CDER classification of published data. Contains 10 chemical-

class-specific discriminant models for summary SAL 

mutagenicity data from various sources. 

http://www.leadscope.com/  LeadScope, 

inc./ ToxScope 

Data-mining, 

SAR 

development 

RTECS, CPDB, 

NCI/NTP 

Yes Provides interactive data exploration and filtering by organic 

chemical class and functional group hierarchies, chemical 

properties, and biological activities, including carcinogenicity 

and mutagenicity as contained within RTECS, NCI/NTP and 

CPDB (150,000+ chemicals). 

 
a  Website urls were active and current at the time of submission of this review; if a url becomes inactive, we suggest referring to the top-level url of the company 
or organization to relocate specific information. 
b  See Table 5.1 for definitions of abbreviations and description of data sources. 
c  Contains structure-searchable relational content, allowing a user to independently explore the toxicity databases contained therein; databases within MultiCASE 
products are not accessible by relational searching independent of the prediction algorithm functions. 
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database report all experiments yielding either positive or negative responses in a 
given assay system (e.g., NCI/NTP)?  Are the results reported as quantitative 
experimental measures of activity (e.g., slope of the dose response curve of 
revertants/nmol in Salmonella typhimurium [SAL] TA100 strain, standard Ames 
reversion assay), or as a categorical assignment of summary activity, either positive 
or negative (e.g., clearly above or below a chosen threshold of activity)?  To what 
degree does the final reported activity represent the results of a clearly defined 
experimental system (e.g., with respect to species, strain, target organ, assay)?  
Alternatively, to what degree has the reported activity been averaged or combined 
with other activities to produce a summary result, or considered with other 
information to produce a weight-of-evidence conclusion?   Since each of these data 
considerations has the potential to significantly influence SAR modeling outcomes, 
they must be acknowledged and openly confronted in any analysis of SAR model 
significance and predictive applicability.    

 
5.3.2  Summary Toxicity Results 
 
A number of summary toxicity measures are commonly employed in SAR modeling 
studies (see, for example, currently available TOPKAT and CASE/M-CASE SAR 
models in Table 5.2).  An example of a summary toxicity result is a “positive SAL 
mutagenicity” result for a chemical listed in EPA Gene-Tox if a positive result was 
reported in any of the five standard SAL strains: TA98, TA100, TA1535, TA1537, 
TA153820.  A second example is a “positive carcinogenicity” result in the NTP rodent 
bioassay if a significant tumor outcome is observed at a single tissue or organ site in 
any one of the 4 tested rodent species- and gender-specific models21,22.  Several 
motivations to focus on summary toxicity results as opposed to individual bioassay 
results transcend the particulars of the SAR method or model approach.  The first is 
practical: to create a training set spanning the largest diversity of chemicals and 
descriptor space as is possible for the purpose of adding statistical weight to putative 
SAR associations.  In general, the more targeted the bioassay (e.g., Strain A, male 
mouse, liver tumors), the smaller the database that is available.  The second 
motivation pertains to the ultimate use of the bioassay results and associated SAR 
model, such as in hazard identification for assessing potential effects in humans.  In 
the latter case, one is less interested in the particular strain or species- or gender-
specific effect of a chemical, and more interested in encompassing general and varied 
mechanisms of mutagenicity or carcinogenicity that are confirmed in multiple assays, 
and that could have potential relevance to humans.  In contrast, a weight-of-evidence 
call generally involves consensus of an expert committee that has taken into account 
other information besides the explicit bioassay results (e.g., knowledge of species-
specific mechanisms of bioactivation, experience with analogs, epidemiological 
evidence), an example being an IARC classification of a NTP rodent carcinogen as a 
probable or possible human carcinogen.   

Why are the above distinctions important?  The further an SAR model is 
removed from a biologically relevant experimental test outcome, and presumed 
common mechanisms of action within activity classes, the less theoretical 
underpinning is provided and the more heuristic the model becomes2,23.  If the goal of 
an SAR study is to provide mechanistic insight into the activity under consideration, 
then it is paramount that the experimental data under consideration provide a clear 
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and objective measure of a chemical-induced biological activity of interest23,24.  On 
the other hand, if the goal is to create an SAR model for use in hazard assessment or 
screening, then an ability to reproduce less objective historical “activity calls” or 
hazard assessments is of greater interest.  The evolution of carcinogenicity SAR 
prediction models created with the commercial MultiCASE (CASE/M-CASE) and 
TOPKAT systems over the past several years exhibits a trend towards increased 
reliance on more biologically refined models.  Current TOPKAT and MultiCASE 
commercial offerings (see Table 5.2) include several species- and gender-specific 
rodent carcinogenicity submodels, as well as models at the species (rat or mouse) and 
rodent level (rat and mouse combined) and, in the case of TOPKAT, multi-site vs. 
single site tumorgenesis within each species and gender model.  Not surprisingly, the 
more focused submodels (e.g., male rat) are more uniquely characteristic and 
predictive of the submodel bioassay results, and are potentially more informative of 
species- and gender-specific mechanisms25-27.  A corollary, however, is that these 
“less averaged” models are more tied to the peculiarities of the species- and gender-
specific data and are more influenced by singular and spurious results in that data25-28, 
in that they are attempting to faithfully replicate the actual bioassay results.    

Building species- and gender-specific SAR submodels for rodent 
carcinogenicity allows for potentially greater flexibility and transparency in 
prediction strategies.  One can attempt to either mirror the process of expert heuristic 
evaluation of rodent carcinogenicity (e.g., by combining rodent submodel results in 
various ways to yield a summary result) or one can model the heuristics directly (e.g., 
by modeling the summary rodent carcinogenicity calls directly), with different 
possible outcomes.  Rosenkranz and coworkers25,29 have reported strategies for 
combining CASE/M-CASE rodent species-specific carcinogenicity submodels and 
summed models using Bayesian statistics to optimize overall prediction performance 
measures (sensitivity, specificity, concordance).  Because each of these SAR models 
is derived from a different set of data, each model contains a different profile of 
biophores (i.e. structural fragments significantly associated with active chemicals) 
that presumably captures different information relative to the SAR prediction 
problem.  For example, Cunningham et al.27 have reported only 36% overlap in 
CASE/M-CASE biophores derived from the CPDB rat and mouse summary tables, 
implying significantly different structural drivers for carcinogenicity in the two 
species.  

Rodent bioassay data resolved to the species or species- and gender-specific 
level, in principle, can be further resolved to tumor site (e.g., liver, kidney, etc.)30,31.  
This focus can be more problematic from an SAR modeling standpoint due to limited 
numbers of chemicals for which data are available relative to any particular tumor 
site.  Hence, virtually no reported SAR models of rodent carcinogenicity data 
resolved to tumor site have been reported.  The most prevalent tumor site observed in 
the NCI/NTP rodent bioassay experiments is the liver, and yet this tumor site was 
observed in only 15% of experiments 30.  In addition, the biological significance of 
tumor site-specific information is an issue of some controversy.  In one of the few 
quantitative analyses of tumor site-specific rodent bioassay information, Benigni and 
Pino32 reported that species specificity generally overcame organ specificity in the 
majority of tumor site categories (e.g., liver tumors are nearly exclusive to mice and 
rarely occur in rats).  Moreover, the species specificity was remarkably stronger than 
the trans-species sex specificity (e.g., females of both rats and mice shared few 
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common tumor sites). Finally, within a few chemical classes believed to be most 
clearly associated with common carcinogenic activation mechanisms (e.g., aromatic 
amines), no obvious association of chemical structure with tumor profile was 
discerned; that is tumors were produced at a wide range of sites for chemicals within 
each class.  These results suggest that stochastic elements in the carcinogenic process 
are likely to play a role in the intervening steps to tumor formation, subsequent to the 
initial chemical bioactivation step (e.g., nitrenium ion formation in aromatic amines).  
The implication for future SAR study is that tumor site-specific information may not 
prove useful for improving mechanism-based categorizations of rodent 
carcinogenicity data, and by inference, tumor site is unlikely to be a viable target for 
SAR prediction. 

 
5.3.3 NCI/NTP and CPDB Rodent Carcinogenicity Summary 

Results 
 
The vast majority of SAR models developed to date for carcinogenicity prediction 
have been built upon one of two main public sources of rodent bioassay data, i.e. 
from summary tables of the NCI/NTP and the CPDB rodent bioassay databases (see 
Table 5.1).  These include the varied SAR models that participated in the NTP 
Predictive Toxicity Evaluation (PTE-1 and PTE-2) exercises, discussed by Benigni in 
Chapter 9 of this volume and in published studies9,11.  To understand the distinctions 
among published SAR models derived from these two data sources requires 
understanding of the major differences in the summary rodent carcinogenicity tables 
from the two databases.  The NCI/NTP rodent bioassay database provides data on 
over 400 chemicals, generated in a number of laboratories, but using a standard 
experimental protocol with respect to numbers of animals, strains, dosing regimens, 
pathology, and statistical analysis of results21,22.  Although there have been some 
changes in these protocols over time, this database is considered to be relatively 
consistent in terms of experimental design.  The CPDB contains a larger diversity of 
chemical structures (over 1300), and includes tumor data reproduced from all of the 
NCI/NTP rodent bioassay Technical Reports as well as additional data extracted from 
over 1200 literature sources subjected to extensive review33-36.  In addition, the 
CPDB includes bioassay results from species other than rat and mouse and 
incorporates a wider variety of experimental protocols from the general literature that 
meet well-defined, but generally less stringent inclusion criteria when compared to 
the NCI/NTP protocols (http://potency.berkeley.edu/text/methods.html).  

A further distinction between the summary rodent carcinogenicity tables 
derived from the NCI/NTP and CPDB databases, that is sometimes overlooked by 
SAR modelers, is that different summary calls may be listed for the same chemical34.  
When literature experiments are also factored in the assignment of species/gender 
positivity, the CPDB summary table occasionally lists a positive species/gender call 
for a chemical listed as negative in the NCI/NTP.  In addition, a quantitative measure 
of carcinogenic potency is included in the CPDB, but not the NCI/NTP summary 
table.  This potency measure, termed a TD50, is defined as: “that dose-rate in mg/kg 
body wt/day which, if administered chronically for the standard lifespan of the 
species, will halve the probability of remaining tumorless throughout that period”37.  
The TD50 takes into account a number of experimental details (such as length of 
experiment, conversion factors, and estimate of dose) and is computed for 
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species/gender/tissue/tumor site in each experiment.  The CPDB carcinogenicity 
summary table reports the harmonic mean TD50 value from positive experiments for 
each species34,37.  Significant documentation and details pertaining to the inclusion 
criteria used for incorporating a study result into the CPDB and the computation of a 
TD50 are available at the CPDB website (see Table 5.1).  

Specifically because it provides a quantitative and comparable measure of 
relative carcinogenic potency among CPDB chemicals, the TD50 poses an alluring 
modeling challenge for traditional quantitative structure-activity relationship (QSAR) 
study of carcinogenicity.  Benigni and Passerini38 have reported successful 
development of predictive QSAR equations for rat and mice, based on the species-
level rat and mouse TD50 values, for a well-defined chemical class, i.e., aromatic 
amines.  Similarities between the forms of these QSAR equations and those derived 
earlier for Salmonella mutagenic potency of aromatic amines, as well as the 
mechanistic relevance of individual QSAR parameters, increase confidence in the 
validity of these equations38.  The success of these QSAR modeling efforts, further 
demonstrated in objective statistical terms, lends independent support to the 
contention that the species-averaged TD50 potency measure has some biological 
relevance in the context of a mechanistically well-defined chemical class.    

 
5.3.4 Data Quality and Reproducibility of Rodent  

Bioassay Results 
 
An interesting corollary to the above discussion concerns issues of data quality and 
reproducibility associated with the rodent carcinogenicity bioassays, and the potential 
impact on SAR model success.  The rodent carcinogenicity bioassay, as performed 
by the standard protocols of the NCI/NTP, is very costly and time-consuming.  As a 
result, full replicate experiments are not performed by the NCI/NTP and are seldom 
performed by others.  Although reproducibility is assumed under the strict guidelines 
of the NCI/NTP protocol, the true reproducibility of these experiments, as well as 
other experiments operated under less strict protocols, is largely unknown.  And 
because error associated with experimental reproducibility places an upper limit on 
the absolute predictivity achievable by any SAR model, this limit of predictivity is 
also unknown.   

Based on analyses of a relatively small set of 38 replicate experiments from 
the literature (testing the same route, sex and strain of rodent), Gold et al.33 have 
estimated overall reproducibility of the rat bioassay at 85% and the mouse bioassay 
slightly less, at 80%.  A more recent analysis by Gottmann et al.39 makes the 
provocative assertion that “rodent carcinogenicity assays are much less reproducible 
than previously expected” and because of this “rodent carcinogenicity assays should 
be treated as unreliable, which has consequences for SAR modelers and the risk 
assessment process”.  These conclusions were derived from analysis of a larger set of 
121 chemicals for which replicate rodent bioassay results for the same chemicals, but 
tested under different protocols, were available from both the NCI/NTP rodent 
bioassay database and additional rodent bioassay experiments contained in the 
CPDB.  These authors estimated concordance of only 57% in overall rodent 
carcinogenicity classifications (i.e. positive or negative) from both sources, with 
comparably poor concordances found with respect to species-, gender-, strain-, and 
target organ-specific test results across laboratories.  Interestingly, however, the 
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results of Gottmann et al.39 agreed with those of Gold and coworkers33 in the finding 
that rat bioassay results were considerably more reproducible than mouse bioassay 
results (62% vs. 46%) and that rats were significantly more sensitive to carcinogens 
than mice (i.e. a larger percentage of chemicals are found to cause tumors in rats than 
in mice).   

Gottmann et al.39 note that a large proportion of the replicate experiments 
(34/47) examined in the earlier Gold et al.33 analysis were published by the same 
authors.  Among the number of other significant differences in these two replicate 
studies, is the larger and more varied set of chemicals considered in the Gottmann et 
al.39 study; however, differences in experimental protocol in what are considered 
replicate experiments cannot be ruled out as the main reason for observed lack of 
concordance.  Given that the NCI/NTP experimental protocols are generally stricter 
and more uniformly applied than in the majority of literature rodent bioassay studies, 
in our view the more variable literature studies cannot be used as a reliable judge of 
the reproducibility of the NCI/NTP experiments.  The most that can be concluded 
from the Gottmann et al.39 analyses is that estimating the reproducibility of rodent 
bioassay results is indeed problematic given current data constraints and that 
adherence to strict experimental protocols (such as the NCI/NTP) may be essential 
for achieving reproducibility in results, but that this assertion remains unconfirmed.   

The above analysis of “replicate” bioassay results highlights experimental 
protocol as one of the most important confounding factors.  It is reasonable to expect 
that the lack of concordance observed for chemicals tested by both the NCI/NTP and 
additional studies included in the CPDB would be representative of more chemicals 
in the CPDB if more replicate data from the NCI/NTP were available.  Hence, 
beyond differences in chemical coverage due to the larger number of chemicals 
represented in the CPDB, it is anticipated that the different information content in 
rodent carcinogenicity summary tables derived from these two databases will yield 
significant differences in SAR models.  Indeed, this has been reported in various 
CASE/M-CASE published analyses25-27 and is manifested in the commercial 
availability of separate NCI/NTP and CPDB SAR models (see Table 5.2).    

 
5.4    DATA DEPENDENCE OF SAR MODELS: CASE/M-CASE  
 EXAMPLES 
 
5.4.1 Database Informatics Analyses 
 
The CASE/M-CASE approaches consist of computer-based algorithms for automated 
SAR analysis and prediction that can, in principle, be applied to any sort of data in 
which organic chemicals with known structures are linked with corresponding 
activities in biological systems.  Details of the CASE/M-CASE approaches are 
provided in Chapter 6 of this volume and in published studies6-8.  In brief, the 
methodology is primarily based upon the deconstruction of chemical structures into 
all possible composite structural fragments of length 2-10 heavy atoms.  Each of 
these fragments is assigned a CASE activity unit (based on categorical or potency 
assignments) reflecting the activity of the corresponding parent structure, and 
fragments from the entire database are then pooled into gross activity categories, i.e. 
positive, marginal or negative.  A structural fragment is labeled as a biophore, in 
CASE parlance, only if it has significantly skewed statistical representation in the 
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active category (i.e., is represented in many more active than inactive parent 
compounds).  The older CASE technology operates in this fashion on the entire 
database of chemicals, without prior or subsequent classification.  The newer M-
CASE technology adopts a hierarchical classification process in which biophores of 
greatest statistical significance are extracted from an initial CASE analysis and used 
to define major biophore-containing classes.  These classes are separately analyzed 
by a subsequent CASE analysis to discern substructural modifiers to the activity of 
the major biophore class (an example would be different patterns of methyl 
substitution modifying activity within the class of aromatic amines, each member of 
which contains the aromatic amine functionality).  The CASE and M-CASE 
approaches operate on the same dataset in different ways and, hence, will often yield 
a somewhat different set of biophores and related, but distinct prediction models.    
 The CASE/M-CASE approaches represent unbiased, de novo SAR analyses 
in the sense that, once CASE activity units are assigned to each molecule in the 
database (a point for human intervention and some subjective judgment), the derived 
prediction model is fully determined by automated and objective analysis of the data.  
A corollary is that the CASE/M-CASE model outcomes will be determined solely by 
the nature of the data, and will be intimately tied as well to the quality, extent (i.e. 
numbers and types of chemicals included), and biological representation of the 
data40,41.  It is acknowledged that any number of alternative SAR approaches could be 
taken to analyzing the same set of biological data, using different chemical 
descriptors, types of information, and functional algorithms, thus producing different 
model outcomes and predictive capabilities.  It is also recognized that the CASE/M-
CASE approaches have inherent limitations tied to the nature of the chemical 
representations and algorithms employed (for comparisons of different SAR 
approaches applied to predictive toxicology, the reader is referred to a number of 
reviews on the topic2,9-14).  For purposes of this discussion, we are primarily 
interested in the ability of the automated CASE/M-CASE technology to shed new 
light back onto the toxicology databases used in model development.  In large part, 
this is due to the transparency and interpretability of the formulation of CASE/M-
CASE results (i.e., consisting of discreet substructural fragments).   
 A number of CASE/M-CASE publications have demonstrated this general 
informatics capability, effectively highlighting the intimate relationship between 
modeled data and model outcome.  A novel method has been described for assessing 
the informational content of toxicity databases used to train CASE models by 
applying these models to predicting on a large external dataset of 5000 compounds, 
designed to approximate the “universe” of chemicals from a structural standpoint41,42.  
The proportion of CASE model predictions that are accompanied by a warning of the 
presence of an unknown structural feature (i.e., a fragment not previously seen in the 
model training data set), provides an objective measure of the informational content 
of the training data set relative to the external dataset.  The informational content is 
quantitatively estimated as (100 - % predictions accompanied by warning).  This 
approach has been applied to evaluating and proposing strategies for increasing the 
informational content of existing databases for Salmonella mutagenicity and 
clastogenicity41.  Increasing informational content of a toxicity database involves 
targeting molecules containing unknown functionalities for testing and subsequent 
incorporation into an expanded training data set.  It follows that the optimal size of a 
toxicity database, from the CASE modeling perspective, is the stage at which the 
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informational content of the database no longer increases significantly with 
increasing size43.  For a Salmonella mutagenicity database, Liu et al.43 found this 
plateau to occur at a training database size of approximately 400 chemicals.  Prior to 
this number, the indices of CASE model predictivity (i.e., sensitivity, specificity, and 
concordance between experimental and predicted results) increased with increasing 
size of the database.  Note that, because the CASE informational content measure 
does not depend on fragment activity assignments but only on single fragment 
incidences in the database, it can only serve as an approximate measure of 
informational content relative to the biological activity under study.  For example, if 
the same approach applied to Salmonella mutagenicity were applied to evaluating 
databases of rodent carcinogenicity, an endpoint of greater biological complexity, it 
is likely that a larger optimal database size (i.e. beyond 400 chemicals), having 
approximately the same CASE measure of informational content, would be necessary 
to achieve comparable measures of CASE model predictivity.  This conclusion has 
been borne out in subsequent studies26-28. 
 In other studies, Rosenkranz and coworkers have used CASE model 
biophores that reflect both fragment representation and biological activity 
considerations within the database as an objective means for assessing mechanistic 
similarity (or dissimilarity) between two or more toxicological endpoints26,27,44.  Here, 
the assumption is that CASE biophores represent a distillation of the mechanistic 
informational content of the toxicological database, capturing the main drivers for 
predicting the structural basis of the particular toxicological activity under study.  
Two databases for different toxicological endpoints might contain entirely different 
chemical structures that have undergone testing, yet some proportion of the CASE 
biophores associated with activity could be the same, indicating common drivers for 
the two toxicities.   Equally informative could be CASE biophores that differ 
between two models, indicating possible mechanistic divergences between the two 
test systems.  Analyses have been reported indicating significant commonalities, for 
example between mutagenicity in Salmonella and carcinogenicity in mice (approx. 
40% overlap in identical or embedded biophores)26.  In addition, these types of 
analyses have proven useful for assessing mechanistic informational content and 
overlap between cytotoxicity endpoints and rodent carcinogenicity, and endpoints 
reflecting genotoxic vs. non-genotoxic modes of carcinogenic activation26,27.    
 In addition to the above informatics applications, the CASE technology has been 
used to examine the effect on model performance of varying the ratios of actives and 
inactives within the database43,44, and to suggest procedures for objective validation 
of models29 and for assessing model predictivity45.  These varied applications 
demonstrate utility of an SAR approach that goes beyond toxicity prediction for 
individual chemicals, illustrating the application of objective data analysis methods to 
illuminating characteristics of toxicity databases that impact on the larger toxicity 
prediction problem.   
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5.4.2  Rodent Carcinogenicity Prediction Models 
 
We have devoted significant discussion elsewhere in this chapter to highlighting 
differences in content and activity representations within the NCI/NTP and CPDB 
rodent carcinogenicity summary tables.  These differences are clearly manifested in 
reports of CASE/M-CASE models for carcinogenicity in mice and rats derived from 
these two databases25-27.  Although the first published CASE/M-CASE species- and 
gender-specific rodent carcinogenicity models were based exclusively on the 
NCI/NTP summary calls, motivations for deriving models based on the CPDB 
summary calls included the larger numbers and diversity of chemical structures and 
the species-averaged TD50 as a measure of relative potency.  The TD50 was used to 
calibrate more finely CASE significance of structural fragments in association with 
activity26,27.  Hence, the CASE/M-CASE models derived for the four rodent 
experiments (male and female rat and mouse) represented in the two datasets differed 
not only in terms of the chemicals included, but also in terms of the means used for 
categorizing carcinogenic activity.  A quantitative indication of the profound 
differences between these model training sets is reflected in the mere 28% overlap in 
biophores reported for the CPDB and NCI/NTP rat models27.  This slight overlap is 
even more remarkable considering that the structural information pertaining to the 
NCI/NTP chemicals is completely contained within the CPDB; it is only the activity 
assignments that potentially differ.  This significant lack of concordance between 
models for the two rat carcinogenicity datasets shed some doubt on the significance 
of either model result.  As a result, neither CPDB rat model was incorporated into the 
CASE/M-CASE rodent carcinogenicity prediction models in two reported studies25,29.   
 Overall concordances of rat and mouse (species level) CASE/M-CASE 
models for the CPDB were reported as 64% and 70%, respectively27.  Interestingly, a 
number of other performance indicators by which the rat models were judged less 
significant than the mouse models, included a similar lower concordance of rat 
compared to mouse for the NCI/NTP models.  Given the evidence, independently 
corroborated in two reproducibility studies33,39, that rat carcinogenicity data are 
significantly more experimentally reproducible than the mouse carcinogenicity data, 
the lower performance indicators for the rat models are somewhat surprising.  
Cunningham et al.27 point out that the rat data are significantly more robust than the 
mouse data in terms of having 92 more carcinogenic chemicals in the CPDB for the 
rat than for the mouse, and in terms of the significantly smaller number of different 
tested strains (74 for rats vs. 101 for mice).  However, they also point to the 
distinction that reproducibility represents repeated challenges of the same chemical, 
whereas the more varied response in the rat is with respect to different chemicals that 
can act by possibly more varied mechanisms.  Hence, the authors speculate, “the 
lesser predictivity of the rat CPDB SAR model may be indicative of a more variable 
response to chemical carcinogens for rats than for mice”. 27   
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5.4.3  Influence of Toxicity Protocol on SAR Models 
 
A final point is made concerning the ability of SAR models to comparatively assess 
databases meeting different quality criteria or employing different protocols for 
formulating and classifying experimental data, again referencing relevant examples 
employing the CASE/M-CASE technologies.  In the first example, CASE analyses 
were applied to modeling cytogenetic endpoint data extracted from both the 
EPA/Gene-Tox database (see Table 5.1) and the NTP database46.  Models that 
allowed thorough analyses of the structural features of the cytogenetic endpoints 
were successfully derived for the NTP dataset, whereas the CASE technology was 
applied without success to the EPA/Gene-Tox dataset45.  It was concluded that the 
standard protocol and quality control ensured in the NTP dataset could not be 
assessed for the literature-abstracted data collated within the EPA/Gene-Tox dataset, 
and that greater experimental variability and poorer data quality within the 
EPA/Gene-Tox dataset likely accounted for the failure to derive CASE models45.  
Although this conclusion might have been anticipated based solely on data quality 
control considerations, the explicit failure to derive CASE models gives independent 
and objective credence to this assessment.   
 In a second example, CASE/M-CASE analyses effectively contrasted two 
distinct protocols for activity classification of mouse lymphoma forward mutational 
assay (MLA) results47.  The first database consisted of MLA results generated and 
evaluated under a defined protocol of the NTP (MLA/NTP).  The second dataset, 
consisting largely of different chemicals, resulted from an in-depth reevaluation of 
literature studies that were judged according to a significantly different protocol for 
activity assignment than used by the NTP; this analysis was carried out by an EPA 
Gene-Tox working group (MLA/GT)47.  It was reported that CASE/M-CASE models 
for the MLA/GT dataset were significantly more predictive than for the MLA/NTP 
dataset47.  Additionally, the MLA/GT models were reportedly far simpler than the 
MLA/NTP models, containing fewer, more statistically significant biophores.  In this 
example, it appears that the effect of significantly different protocols for activity 
assignments outweighed possible quality control issues in determining SAR 
modeling success.  These SAR model results also independently suggest that the 
MLA/GT protocol for activity assignment possibly provides a more biologically 
coherent and meaningful measure of activity than the MLA/NTP protocol.   
 In the third example, Matthews and Contrera28 report different calibration 
and application of rodent carcinogenicity models in development of optimized M-
CASE modules, with the objective of better replicating the heuristics of the 
carcinogenicity review process for pharmaceuticals of the U.S. Food and Drug 
Administration (FDA).  One of the most important changes in this M-CASE 
implementation was the assignment of a potency weight factor that ranks carcinogens 
and biophores (i.e., active fragments) according to FDA regulatory importance: trans 
species>trans-site/single species>single-site/species28.  This is a more specific 
designation of carcinogens than the activity designation that was used in deriving the 
NTP/M-CASE model; that is the latter assigning equal weight to trans or single site 
carcinogens, labeling both as positive.  The second major modification was that the 
FDA/M-CASE system was trained on a larger data set (n=934) that included a 
significantly larger percentage of pharmaceuticals extracted from the CPDB and 
FDA files.  The FDA/M-CASE optimized model identified over twice as many 



 

 170

 

biophores as the default M-CASE model that was trained on a smaller NCI/NTP data 
set (n=316)28.  In addition, in application to a beta test set containing a significant 
percentage of pharmaceutical-type chemicals, this model performed significantly 
better than prior M-CASE models that had been trained on the NCI/NTP dataset, the 
latter containing mostly industrial and environmental chemicals and few 
pharmaceuticals.  The optimized FDA/M-CASE model was exceedingly accurate in 
predicting carcinogens correctly in the beta test set, achieving 98% specificity, 
whereas a relatively large percentage of carcinogens were also falsely predicted to be 
negative (over 40%)28.  The latter performance indicator is most likely a reflection of 
generally greater ignorance (i.e., fewer examples in the training dataset) pertaining to 
the more varied activity-conferring structural moieties in larger pharmaceutical-type 
chemicals.  This example illustrates, once again, the strong reliance of the M-CASE 
prediction model and performance statistics on the training dataset and the activity 
designations used in model derivation.   
 
5.5   TOXICITY DATABASE TOOLS TO AID SAR MODEL  
 DEVELOPMENT 
 
5.5.1 Commercial Relational and Data-mining Applications 
 
The ability to relationally search across public toxicity databases using both 
biological and chemical criteria represents a potentially powerful approach for SAR 
hypothesis generation, model development, and model validation.  This paradigm 
offers maximum flexibility to an informed user and empowers the concept of analog 
searching, in both chemical and biological domains.  Large pharmaceutical and 
chemical companies, in particular, have invested heavily in relational database 
platforms and data-mining tools for managing, exploring, and providing widespread 
corporate access to large internal libraries of chemical and biological test 
information.  In government, the FDA’s Center for Drug Evaluation (FDA-CDER) is 
emulating this corporate approach by creating a relational database, searchable by 
chemical structure, for pharmaceuticals submitted for registration and approval48.  In 
addition, they are coupling this technology to the M-CASE SAR predictive software 
to add in-silico toxicity prediction capabilities across a variety of endpoints of 
concern, including mutagenicity and carcinogenicity28.  These two technologies -- 
relational searching and automated toxicity prediction -- are being used hand-in-hand 
within the FDA-CDER program to facilitate and improve initial hazard assessments 
of reviewed chemicals48.   
 Examples of commercial relational database applications containing 
extensive compilations of field-delimited mutagenicity and carcinogenicity data 
linked with chemical structure information include the MDL, Inc. Toxicity database 
and SciVision’s ToxSys software (see Table 5.2).  The version of TOPKAT currently 
marketed under Accelrys also allows, as a complement to its SAR prediction 
modules, relational structure-based searching across TOPKAT mutagenicity and 
carcinogenicity databases used in model development.   
 Examples of commercial data-mining applications that have been applied to 
analysis of mutagenicity and carcinogenicity data, primarily for pharmaceutical drug 
development, are offered by LeadScope, Inc. (see Table 5.2) and Bioreason, Inc (see 
Table 5.3).  Data-mining applications differ from commercial toxicity prediction 
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programs, such as TOPKAT and CASE/M-CASE, in that they provide a user with 
automated tools for interactive data exploration, rule-extraction, and de novo SAR 
hypothesis generation pertaining to mutagenicity and carcinogenicity endpoints.  
LeadScope’s ToxScope product includes large stores of public mutagenicity and 
carcinogenicity data primarily abstracted from RTECS (see Tables 5.1 and 5.2)49.  
The unique feature of this application is the ability to interactively visualize activity 
patterns across hierarchically displayed organic substructural classes, coupled with 
the ability to filter activities according to multiple structure-based criteria.  It is 
envisioned that a corporate user of this product would merge public toxicity data 
stores with proprietary toxicity databases, if available, to customize and enhance 
data-mining capabilities.  Bioreason’s ClassPharmer suite of programs similarly 
provides users with interactive computational algorithms for organizing, classifying, 
and generating SAR hypotheses from structure-linked toxicity databases, although in 
this case, databases must be provided by the user.  Bacha et al.50 have demonstrated 
use of this technology for analyzing Salmonella mutagenicity data, illustrating the 
ability to simultaneously explore classifications of chemicals that incorporate features 
potentially relevant to both the desired pharmacological activity as well as the 
undesired toxicity. 
 Both relational database applications and data-mining applications add 
valuable functionality to existing, historical toxicity data records, to enable more 
sophisticated use and exploration of these data.  However, since they rely primarily 
on the same publicly available stores of toxicity data, it follows that these 
applications will be bound by the same data availability, representation and quality 
constraints that strongly influence other types of SAR modeling endeavors.   
 
5.5.2   Public Toxicity Database Initiatives 
 
Two new public database initiatives, in early stages of development, will be briefly 
described. Both are aimed at improving public accessibility to structure-linked 
toxicity data across a variety of endpoints, test systems, and data sources.  In 
addition, shared objectives of both efforts are (1) to add chemical structures to 
existing public toxicity data to aid SAR model development, (2) to standardize the 
format of chemical and toxicological information to facilitate relational searching 
across diverse chemical and biological information fields, and (3) to enter into 
partnerships with persons and entities that use and maintain these public toxicity data 
stores to expand these efforts.   
 A consortium of industry and government sponsors has charged the 
International Life Sciences Institute (ILSI) with development of an SAR toxicity 
database (see Table 5.3).  The stated mission of the ILSI Structure Activity 
Relationship (SAR) Database Subcommittee is to “utilize the vast collection of 
toxicology that has been developed by the international government, industry, and 
academic community to establish a centralized database of toxicity testing results, 
including structure-activity relationships, which will be useful for predictive 
toxicology” (www.ilsi.org, Table 5.3).  The relational database application chosen for 
this effort is a modified version of IUCLID (see Table 5.3), an application currently 
endorsed as the primary toxicity data exchange tool for the European Union Risk 
Assessment Program and the Organization for Economic Cooperation and 
Development (OECD) Existing Chemicals Program.  LHASA Limited, working in 
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TABLE 5.3 
Miscellaneous Websites for Commercial Data-Mining and Relational Database Applications Requiring User-
Supplied Data, and Websites for Public Toxicity Database Development Efforts 

 
Website URL a Company/ 

Application 

Type Description 

http://www.bioreason.com 

 

Bioreason, Inc./ClassPharmer Data-mining application 

software 

Provides application tools for data management, and structure-driven 

knowledge discovery based on algorithms for organizing, classifying, 

and generating SAR hypotheses. 

http://www.ilsi.org 

 

International Life Sciences Institute 

(ILSI) SAR Database Subcommittee 

SAR toxicity database Nonprofit organization collaborating with LHASA, Ltd. and 

consortium of industry and government groups to develop an SAR 

database of toxicity information for use in predictive toxicology. 

http://ecb.ei.jrc.it/Iuclid/  

 

European Chemicals Bureau/ 

IUCLID database system 

Relational database Database application used for data collection and evaluation within 

the European Union Risk Assessment Program; does not contain 

chemical structure field in current form. 

http://www.chem.leeds.ac.uk/luk/ 

  

LHASA, Ltd. SAR expert knowledge 

-based technologies 

Markets DEREK and METEOR expert systems for toxicity and 

metabolism prediction, but with no databases included.  Added 

structure field and structure-searching capabilities to IUCLID for 

building ILSI SAR toxicology database prototype. 

http://www.dsstox.net or 

http://www.epa.gov/nheerl/ 

dsstox/b 

EPA/Distributed Structure-Searchable 

Toxicity (DSSTox) database network 

Standard format files of 

chemical structures and 

toxicity data 

Central website will contain general information, tools and guidance 

for Sources in constructing new DSSTox files, central field 

definitions file, and links to DSSTox source websites containing 

DSSTox standardized toxicity data files available for free download 

by the public. 
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TABLE 5.3 (Continued) 
Miscellaneous Websites for Commercial Data-Mining and Relational Database Applications Requiring User-
Supplied Data, and Websites for Public Toxicity Database Development Efforts 
 

Website URL a Company/ 

Application 

Type Description 

http://www.acdlabs.com  Advanced Chemistry Development/ 

ChemFolder 

Chemical relational 

database application 

Low-cost, PC-based chemical relational database application, allows 

structure, substructure, property, text searching of data, linked to 

chemical drawing program, ChemSketch; allows for searching across 

multiple separate databases. 

http://chemfinder.cambridgesoft.c

om 

 

CambridgeSoft/ 

ChemFinder 

Chemical relational 

database application 

Low-cost, PC-based chemical relational database application, allows 

structure, substructure, property, text searching of data, linked to 

chemical drawing program, ChemDraw; databases must be imported 

and merged for into single database for searching. 

http://www.mdli.com/products/ 

framework. html 

 

MDL, Inc./ 

Integrated Scientific Information 

System 

Chemical relational 

database application 

Provides information on the SDF standard import/export format; also 

provides a variety of integrated information management products 

using the ISIS base, ISIS draw, and ISIS host applications 

http://www.oracle.com/ 

and 

http://www.accelrys.com/accord/ 

Oracle and 

Accelrys/Accord 

Chemical relational 

database application 

Accord application runs on top of Oracle system to provide chemical 

structure fields and structure-searchability functions.; typical of larger 

corporate centralized databases managed by a central server and 

administrator.   

 
a  Website urls were active and current at the time of submission of this review; if a url becomes inactive, we suggest referring to the top-level url of the company 
or organization to relocate specific information. 
b  Public launch of this website (reached from either url) is anticipated for early 2003.     
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collaboration with ILSI, has incorporated structure fields and structure-searchability 
into the IUCLID application to extend its capabilities for use in development of a 
centralized SAR toxicity database.  LHASA has also been primarily charged with 
coordinating efforts to obtain data from public sources for populating the database.  
The initial pilot project has completed the incorporation of databases for Salmonella 
mutagenicity and carcinogenicity from public sources (e.g., NTP, CPDB), and is 
planning to expand efforts to collect public toxicity data from other sources16.  In 
addition, a more ambitious and longer term goal is to move toxicity data that no 
longer must be confidential from the private records of government regulatory 
agencies and industry into the public domain.  The affiliation of government and 
industry members in this data collection effort represents a major distinction of this 
toxicity database project over other commercial and non-commercial efforts.    
 A second public toxicity database effort, also in development, is the EPA-
sponsored Distributed Structure-Searchable Toxicity (DSSTox) database network.  
Details of this proposal have been published51, and the launch date of the public 
website is planned for early 2003 (see Table 5.3).  The proposal is distilled into the 
following three major elements: (1) an application-independent, standard SDF file 
format adopted for public toxicity databases that supports inclusion of chemical 
structures; (2) a distributed source approach to enable decentralized, free public 
access to DSSTox SDF data files; and (3) community involvement in contributing to 
and expanding the DSSTox public database network.  Structure Data File (SDF) 
format, developed by MDL, Inc. (Table 5.3), is a public, ASCII flat file format that 
stores field-delimited structure, text and property information for any number of 
molecules.  SDF was chosen for the DSSTox effort because it is a de facto standard 
data import/export feature of virtually all commercially available chemical relational 
database applications51.  The latter include low-cost PC-based applications, such as 
ChemOffice's ChemFinder, ACD's ChemFolder, and Accelrys’ ACCORD (see Table 
5.3), in addition to applications with higher-end functionality (e.g., nested fields, 
reaction fields), such as MDL's ISIS, and Oracle-backed systems (See Table 5.3) that 
are typically employed in corporate situations.  Each DSSTox SDF file will contain a 
set of standard chemical identifier fields that includes the 2D structure, followed by 
toxicity information fields.  DSSTox SDF files are being created for a wide variety of 
public toxicological databases, including a number of the main public sources of 
carcinogenicity and mutagenicity data listed in Table 5.1.  These files will be offered 
for free public download from either the DSSTox Central website or DSSTox Source 
websites, and will be easily convertible to data tables or importable into any 
commercial or private chemical relational database application.  A DSSTox Central 
Website (see Table 5.3) will serve as the hub of the DSSTox project, providing 
general information, a central index of field names, links to DSSTox Source websites 
containing DSSTox SDF files, and public tools and resources of general interest to 
the DSSTox community51.  Another crucial role of this website will be to connect the 
DSSTox user community members and to enlist their help in propagating the 
DSSTox recommended standards, reporting DSSTox SDF file errors to the Sources, 
offering enhancements to existing DSSTox SDF files, and aiding in the construction 
of new DSSTox SDF files.   
 The DSSTox proposal is distinguished in two important respects from those 
capabilities and initiatives previously discussed: (1) the complete DSSTox SDF files, 
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including chemical structures, will exist entirely in the public domain and be freely 
available for download, allowing for completely customized use in database 
development; and (2) the distributed network of DSSTox data files will be a 
community-supported, application-independent effort, as opposed to a centralized 
effort creating a large application-specific database.  Complementarities exist, 
however, in that DSSTox SDF files will be directly importable into the central ILSI 
SAR toxicity database effort to expand data contained within the latter.  Another 
clear advantage of the DSSTox approach is that SDF files will be faithful 
representations of existing databases, circumventing difficult value judgments on 
data quality or superiority of one data measurement over another, and deferring these 
judgments to the toxicological domain experts16.  The ultimate success of the 
DSSTox project will depend on the active cooperation and involvement of both the 
toxicity database Sources and the larger DSSTox user community.  The DSSTox 
database network will allow a much larger community of academics, government 
researchers and regulators, and small to medium-sized industries access to powerful 
chemical relational database structure-searching capabilities, and open and complete 
access to public toxicity databases.  This, in turn, will serve to enhance 
communication and collaboration between toxicologists and the SAR modeling 
community, and will facilitate SAR modeling efforts across a wide range of public 
databases and toxicity endpoints.   
 
5.6  CONCLUSIONS 
 
Issues pertaining to the experimental reproducibility, and hence quality of rodent 
carcinogenicity data are currently unanswerable in the most direct sense, and are 
likely to remain so for the foreseeable future.  However, it is important to realize that 
the upper limit of predictivity of an SAR model (but not the lower limit) is bound by 
the same data quality constraints as are assessed directly by experiment.  Hence, the 
most stringent assessments of SAR model predictivity, such as provided by the NTP 
prospective prediction exercises for rodent carcinogenicity (44 and 30 chemicals in 
the PTE-1 and PTE-2, respectively), can, in turn provide some independent and 
objective assessment of data quality and reproducibility.  Benigni, in a summary 
analysis of the results of the PTE-2, concludes that the upper limit of 67% 
predictivity of rodent carcinogenicity is achieved only when SAR considerations 
were combined with expert judgment2.  In this exercise, the pure SAR methods that 
relied solely on chemical structure, such as CASE/M-CASE, performed poorly, 
although many reasons, such as NTP bias towards more “difficult” chemicals already 
suspected of carcinogenicity and small test set, can be enumerated for this result2.  
However, when SAR modeling is confined to the structurally homogeneous set of 
aromatic amines, improved activity discrimination accuracies are reported in the 
range of 80-90% (see Chapter 4 in this volume and Benigni and Passerini38).  It can 
be argued that this result places limits on possible experimental variability and error 
of the rodent carcinogenicity results to within a manageable range of 10-20%, at least 
for this chemical class and species- and gender-specific data.  The FDA/M-CASE 
results of Matthews and Contrera28 also indicate that improvements in model 
performance can be achieved with enriched training sets and refinements in 
weighting and categorization of rodent carcinogenicity information.  In the case of 
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the Salmonella mutagenicity assay, inter-laboratory reproducibility has been 
estimated at 82%, with CASE/M-CASE models reportedly achieving respectable 
predictive concordances of 77%25.    

Data availability, quality and representation issues pertaining to mutagenicity 
and carcinogenicity endpoints clearly have a profound influence on SAR model 
development and predictive capabilities.  With increasing interest in predictive 
toxicology technologies and new initiatives to enhance public data availability linked 
with chemical structure, an appreciation of the fundamental limitations and potential 
capabilities of SAR models in this area of toxicological study is all the more pressing.  
This requires some understanding of the nature of the biological data under study and 
the myriad ways in which these data can be pooled, categorized, and interpreted.  A 
number of examples relative to rodent carcinogenicity data for use in SAR models, 
and application of the CASE/M-CASE technology, have been presented in this 
review to illustrate some important concepts that transcend the particulars of the 
toxicity endpoint or SAR technology being applied.  For the SAR model developer 
and user alike, it is hoped that this discussion has provided some cautionary guidance 
in the application of SAR technologies, as well as presented an expanded view of the 
informatics capabilities of SAR technologies.   
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